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GEORGIA TECH PROJECT E16-654

PRINCIPAL INVESTIGATOR
Erian A. Armanios

This report covers the research work performed for the period
starting September 1991 and ending February 1992. An investigation of the
different physical contributions in the displacement field derived from the
variationally asymptotical analysis is performed. The analytical approach
along with the derived displacement field and stiffness coefficients for a
generally anisotropic thin-walled beam is presented in"detail in Ref.1. A
copy is attached in the Appendix for convenience. -

Significance of Out-of-plane Warping

The variationally asymptotical approach does not require an a priori
assumed displacement field and the warping function emerges as natural
result. It follows an iterative process. The displacement function
corresponding to the zeroth order approximation is obtained first by keeping

" the leading order terms in the energy functional. A set of successive

corrections is added and the associated energy functional is determined.
Corrections generating terms of the same order in the energy functional as
previously obtained, are kept. The process is terminated when the new
contributions generate terms of smaller order. The displacement field
converges to the following expression:

vy = Uj(x) - y(s)U2(x) - 2(s)U3 +G(s)p (x)
+ gi(s)U(x)+ gg(s)U5(x)+ g3(s)U3(x)

by = U2(x)%s!’—’+ U3(x)%zs- + o)

dz d
v =Ua(x) -~ U3(x)a%- o(x)r

(1)

The axial displacement is denoted by v while vg and v denote the
displacement along the tangent and normal to the cross section mid-
surface, respectively as shown in Fig.1. The average displacement over the
cross section along the x,y and z Cartesian coordinate system is denoted
by Ujz(x), U2(x) and Us(x), respectively. The cross sectional rotation is
denoted by ¢(x). The underlined terms in Eq.(1) represent the extension and
bending-related warping. These new terms emerges naturally in addition

to the classical torsional-related warping G(s) ¢’. They are strongly



influenced by the material's anisotropy and vanish for materials that are
either orthotropic or whose properties are antisymmetric relative to middle
surface of the cross section wall. These out-of-plane warping functions
were derived earlier and presented in Ref.2.

Fig.1 Coordinate system

The contribution of out-of-plane warping was considered recently by

Kosmatka [3 ]. Local in-plane deformations and out-of-plane warping of the
cross section were expressed in terms of unknown functions. These
functions were assumed to be proportional to the axial strain, bending
curvature and twist rate within the cross section and were determined
using a finite element modeling. In our formulation, the out-of-plane
warping is shown to be proportional to the axial strain, bending curvature
and twist rate. Moreover, the functions associated with each physical
behavior are expressed in closed-form by g;(s) for the axial strain, g2(s) and
gs(s) for the bending curvatures and G(s) for the twist rate.
An illustration of their effect appears in Figs. 2 and 3 where the bending
slope in a cantilevered beam is plotted along the span. The beam is
subjected to a unit bending load at the tip and has a rectangular cross
section with [15]g (Fig.2) and [30]¢ (Fig.3) layup. Two types of predictions are
compared to the experimental results [4, 5 ]. In the first, the torsional-
related warping is considered only while in the second the contribution of
bending-related warping is included. Extension-related warping is
negligible for this construction. Neglecting bending-related warping leads
to significant errors in predictions for this case.

Shear Deformation Contribution

A gimilar behavior to the one illustrated in Figs. 2 and 3 was found in
the theory of Ref. 5 when the shear deformation contribution is neglected.
This may indicate that the out-of-plane warping due to bending includes
implicitly the shear deformation contribution. In the theory of Ref.5 the
cross section stiffness coefficients are predicted from a finite element
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Fig. 2 Bending slope in a [15]¢ cantilevered beam under unit tip load
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Fig. 3 Bending slope in a [30] cantilevered beam under unit tip load
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simulation. The theory is not restricted to thin-walled configurations. In
order to assess the similarity between the shear deformation contribution
and the out-of-plane warping, the present theory and the numerical work of
Ref. 5 are applied to the prediction of the deflection curve in a cantilevered
beam made of graphite/epoxy material and subjected to a transverse tip
load of 1 Ib. The beam has a [15]g layup with a rectangular cross section.
The geometry and mechanical properties are similar to those of Ref. 5 and
are provided in Table I.

Table I. Cantilever Geometry and Properties

Ply Thickness = 0.005 in
Width = 0.923 in.

Depth =0.50 in.

E11 =20.6 Msi.

E22 = E33 = 1.42 Msi.
G192 =G13 =0.87 Msi.
Gog = 0.696 Msi
v12=v13=0.30

v93 =0.34

Figure 4 shows a similar behavior suggesting that in the present
theory, shear deformation is implicitly accounted through bending-related
warping. The prediction of Ref.5 are referred to as Classical when shear
deformation is neglected. Further evidence could be provided by estimating
the equivalent shear deformation strain in the present theory which can be
expressed in terms of the slope of the plane that approximates the cross
section warping. This slope is given by

__JyvdA

27xy = I,

(2)

where A and Iz denote the cross-sectional area and second moment of

area about the z-axis, respectively. A comparison of the shear strain Yxy
over the length of the beam with the prediction of Ref. 5. is shown in Fig. 5.
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The shear strain at the fixed end is 4.5924x10-4 based on Eq.(2) which is
within 2 % of 4.6857x10-4 calculated on the basis of Ref. 5.

Vertical Displacement (inches)

0.3
———— Hodges et al., NABSA
025 L —— Present, with bending-warping
/
.......... Hodges et al., Classical /
4
02 F 7
—— - . Present, without bending-warping /7
0.15
e
0.1
0.05
0 .
30
gixded Spanwise Coordinate (inches) Tip
n

Fig. 4 Deflection of a [15]¢ cantilevered beam under unit tip load

Closing Remarks

The variationally asymptotical theory developed provides a consistent
means for including the effects of the material's anisotropy in thin-walled
beams. Two issues have been addressed in this progress report. The first, is
concerned with the functional form of in-plane deformation and out-of-
plane warping contributions to the displacement field. The second, is
concerned with the significance of shear deformation effects.

A rigorous proof is provided for the assumed displacement field in
Kosmatka's work [3]. Local in-plane deformations and out-of-plane
warping of the cross section are indeed shown to be proportional to the axial
strain, bending curvature and twist rate within the cross section.
Moreover, their closed form functions are determined.

5
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Fig. 5 Shear strain in a [15)g cantilevered beam under unit tip load

The significance of shear deformation in the modeling of laminated
composites was recognized in the early work of Rehfield and was followed
by Chopra et al. by adopting a Timoshenko-type shear deformation
formulation. The displacement field developed in the present work is shown
to include shear deformation through the out-of-plane warping terms. A
closed form expression for the slope of the plane that approximates the
cross section warping is derived and shown to be within 2% of the shear
strain in a cantilever beam problem.
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Theory of Anisotropic Thin-Walled Closed
' Cross-Section Beams

Victor Berdichevsky, Erian Armanios, and Ashraf Badir *
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ABSTRACT

A variationally and asymptotically consistent theory is developed in order to derive
the governing equations of anisotropic thin-walled beams with closed sections. The
theory is based on an asymptotical analysis of two-dimensional shell theory. Closed-
form expressions for the beam stiffness coefficients, stress and displacement fields are
provided. The influence of material anisotropy on the displacement field is identified.
A comparison of the displacement fields obtained by other analytical developments
is performed. The stiffness cocfficients and static response are also compared with
finite element predictions, closed form solutions and test data.

INTRODUCTION

Elastically tailored composite designs are being used to achieve favorable defor-
mation behavior under a given loading environment. Coupling between deformation
modes such as extension-twist or bending-twist is created by an appropriate selection
of fiber orientation, stacking sequence and materials. The fundamental mechanism
producing clastic tailoring in composite beams is a result of their anisotropy. Sev-
eral theories have been developed for the analysis of thin-walled anisotropic beams.

* Professor, Associate Professor, and Craduate Rescarch Assistant, respectively.



A review is provided in Hodges (1990). A basic element in the analytical model-
ing development is the derivation of the effective stiffness coefficients and governing
equations which allows the three-dimensional (3D) state of stress to be recovered
from a one-dimensional (1D) beam formulation. For isotropic or orthotropic materi-
als this is a classical problem, which is considered in a number of text books such as
Timoshenko and Goodier (1951), Sokolnikoff (1956), Washizu (1968), Crandall et al.
(1978), Wempner (1981), Gjelsvik (1981), Libai and Simmonds (1988), and Megson

(1990).

For generally anisotropic materials a number of 1D theories have been developed
by Reissner and Tsai (1972), Mansfield and Sobey (1979), Rehfield (1985), Libove
(1988), Rehfield and Atilgan (1989), and Smith and Chopra (1990,;1991). A discussion
of these works is provided in the comparison section of this paper.

The objective of this work is to develop a consistent theory for thin-walled beams
made of anisotropic materials. The theory is an asymptotically correct first order
approximation. The accuracy of previously developed theories is assessed by compar-
ing the resulting displacement fields. A comparison of stifiness coefficients and static
response with finite element predictions, closed form solutions and test data is also

performed.

A detailed derivation of the theory is presented frst. This is followed by a sum-
mary of governing equations. Finally a comparison of results with previously devel-
oped theories is provided.

DEVELOPMENT OF THE ANALYTICAL MODEL

Coordinate Systems

Consider the slender thin-walled elastic cylindrical shell shown in Fig. 1. The
length of the shell is denoted by L, its thickness by h, the radius of curvature of the
middle surface by R and the maximum cross sectional dimension by d. It is assumed
that

d<<L h<<d h<< R (1)

The shell is loaded by external forces applied to the lateral surfaces and at the
ends. Tt is assumed that the variation of the external forces and material properties
over distances of order d in the axial direction and over distances of order h in the
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circumnferential direction, is small. The material is anisotropic and its properties can
vary in the direction normal to the middle surface.

It is convenient to consider simultaneously two coordinate systems for the descrip-
tion of the state of stress in thin-walled beams. The first one is the Cartesian system
r,y and z shown in Fig. 1. The axial coordinate is z while y and z are associated
with the beamn cross section. The second coordinate system, is the curvilinear system
z,s and £ shown in Fig. 2. The circumferential coordinate s is measured along the
tangent to the middle surface in a counter-clockwise direction whereas £ is measured
along the normal to the middle surface. A number of relationships have a simpler
form when expressed in terms of curvilinear coordinates. A relationship between the
two coordinate systems can be established as follows. "

Define the position vector 7 of the shell middle surface as
7= ziz + y()% + 2(8)%

where 1z, %, 1; are unit vectors associated with the cartesian coordinate system I, ¥
and z. Equations y = y(s) and 2 = z(s) define the closed contour " in the y, 2 plane.
The normal vector to the middle surface 7 has two nonzero components

i = ny ()5 + n:(S)Ts (2)
The position vector B of an arbitrary material point can be written in the form
R=7F4+¢R (3)

Equations (2) and (3) establish the relations between the cartesian coordinates Z, ¥,
7 and the curvilinear coordinates z, s, §. The coordinate £ lies within the limits

The shell thickness varies along the circumnferential direction and is denoted by h(s).

The tangent vector {, the normal vector 7 and the projection of the position vector
7 on { and 7 are expressed in terms of the cartesian and curvilinear coordinates as

{:—-—:——-- —Z
s dsl"+dsl
L - . dz dy
A=ix D= —1, — —1
s?Y s’



ds ds
.= F dz _ dy
ST M=V T ¥ s

An asymptotical analysis is used to model the slender thin-walled shell as a beam
with effective stiffnesses. The method follows an iterative process. The displacement
function corresponding to the zeroth-order approximation is obtained first by keeping
the leading order terms in the energy functional. A set of successive corrections is
added to the displacement function and the associated energy functional is deter-
mined. Corrections generating terms of the same order as previously obtained in the
energy functional, are kept. The process is terminated when theé new contributions
do not generate any additional terms of the same order as previously obtained.

Shell Energy Functional

Consider in a 3D space the prismatic shell shown in Fig. 2. A curvilinear {rame z,
s, and £ is associated with the undeformed shell configuration. Values 1, 2 and 3 de-
noting z, s, and &, respectively are assigned to the curvilinear frame. Throughout this
section, Latin superscripts (or subscripts) run from 1 to 3, while Greek superscripts
(or subscripts) run from 1 to 2, unless otherwise stated.

The energy density of a 3D elastic body is a quadratic form of the strains
1 ..
U= EE‘JHE,'J'EM

The material properties are expressed by the Hookean tensor E#* Following classical
shell formulation (Koiter (1959), and Sanders (1959)) the through-the-thickness stress
components o3 are considerably smaller than the remaining components ¢ therefore

0,i3 =0 (4)
The strains can be written as
€ag = Yas + £pcﬁ (5)

where 7ap and pag represent the in-plane strain components and the change in the
shell middle surface curvatures , respectively. For a cylindrical shell these are related

to the displacement variables by
_ 6‘1)1
"= oz
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ov, 0
2’712=——1+—v3

0s Oz
vy, v
Y2 = 95 + ﬁ
v
Pll - 6332 (6)

where v, v, and v represent the displacements in the axial, tangential and normal
directions, repectively as shown in Fig. 2. These are related to the displacement
components in cartesian coordinates by

n=4U
dy dz
‘!12 = UQ’d_s' + U3E§ (7)
dz dy
v= ‘U.g-d—s- - U3E )

where u;, u2, and uz denote the displacements along the x, y and 2z coordinates,
respectively.

The energy density of the 2D elastic body is obtained in terms of 7.5 and pas by
the following procedure.

The 3D energy is first minimized with respect to €. This is equivalent to satis-
fying Eq. (4). The result is

. 1 :
U= ncl‘ian = -2—D°‘5"Jso,ge.,5 (8)
where D87 represents the components of the 2D moduli. The expressions for D¢

are given in terms of E*#*® in the Appendix.

The strain £, from Eq. (5) is substituted into Eq. (8). After integration of the
result over the thickness £ one obtains the encrgy of the shell & per unit middle
surface area

h3
2% = hC®yagmns + B2 CY " Yapprs + ﬁcza Y pap P8

)



where
o = L oo

2
Cfﬁms = ﬁ < D“ﬁ"‘sf >
Cgﬁq& = %'_25 < Daﬁ’ycSE'Z >

and a function of &, say a(§), between pointed brackets is defined as an integral
through the thickness, viz.,

wan ede ©)
< >= [0
—h{(s)/2 .

For an applied external loading P;, the displacement field u; determining the
deformed state is the stationary point of the energy functional

I= / ddzds — / Padzds (10)
Asymptotical Analysi's of the Shell Energy Functional

Zeroth-Order Approximation

Let A and E be the order of displacements and stiffness coefficients CPY, re-
spectively. Assume that the order of the external forces is

EAR
p~o (53

This assumption is shown later to be consistent with the equilibrium equations.
An alternative would be to assume the order of the external force as some quantity P
and derive the order of the displacements as PL?/Eh from an asymptotical analysis
of the energy functional.

For a thin-walled slender beam whose dimensions satisfy Eq. (1) the rate of change
of the displacements along the axial direction is much smaller than their rate of change
along the circumferential direction. That is, for cach displacement component

ou| __ |ou
Oz Js




Using Eq. (6) and assuming that d is of the samec order as R, the order of magnitude
of the in-plane strains and curvatures is ‘

>3 ¥ o2

2 2 2 2
2 9 o °
N N

N SN o
e’ N’ N S PR

=
¢
Qo
—

5
b4
Q
TN
&> &>
S’

Since 7;; and py; are much smaller than 712, Y22 and pi2, P22, respectively, their
contribution to the elastic energy is neglected. ' :

By keeping the leading order terms in the strain-displacement relationships, Eq.
(6) can be written as

Ov
22 = —6—31
Ovy v
m=%s "R
1 61.)1
P12= 3 p5s (11)

The order of magnitude of the shell energy per unit area and the work done by

external forces is EAh
o)

EA%h
ol

~J



Since Pu; << @, the contribution of external forces is neglected. The cnergy
functional takes the form '

L
2l = L f{4h01212(%2)2 + 4hC]222712722 + ’1022"!2_(’)"22)2 + 4h2011212'7l2/712

+21°C1 P 12p22 + 2h2CE % y50p12 + R2C 2259 p2

h3 1212 2 h3 1222 h'3 2222 2
+36 (p12)" + 5C2 prpn+ 50 (p22)"}dsdz (12)

The integrand in Eq. (12) is 2 positive quadratic form, therefore the minimum of
the functional is reached by functions v, v, and v, for which yi2 =722 = p12 = P2 =
0. From Eq. (11) this corresponds to ‘

3'01 _
B (13)
ov, v
'5:4--]-2'—0 (14)
6*v a (v, ) )
s ()"0 (15) -

The function v in Egs. (14) and (15) should be single valued, i. e.

e

(‘9_'”> R L (16)
Js

The integral in Eq. (16) is performed along the cross sectional mid-plane closed con-
tour T'. The length of contour I' is denoted by l. The bar in Eq. (16) and in the
subsequent derivation denotes averaging along the closed contour I

Equation (13) implies that v; is a function of z only, i.e.
U = U1 (33) (17)

Integrate Eq. (15) to get
o v
3R —(1) (18)

where ¢(z) is an arbitrary function which is shown later to represent the cross sec-
tional rotation about the z-axis. From Eq. (16) and (18), one obtains the relation

between ¢(z) and v
(x) = (v—Q)
AR

8



Substitute v from Eq. (14) into Eq. (18), to get the following second-order differential
equation for vy 5 5 '
U2 U2
—(R==)+ = = 19
(RS2 + % = 4(z) (19
To solve this equation, one has to recall the relations between the radius of curvature
R and the components y(s) and z(s) of the position vector associated with contour I'

£ _1dy

ds? ~ Rds

&y 1dz . ,

=~ Rds ) (20)

It follows from Eq. (20)‘that % and 4 are solutions of the homogeneous form of Eq.
(19) and v = (z)7s is its particular solution. The general solution is therefore given

by
d d
w:w@£+mm£+¢mh (21)

where U, and Us are arbitrary functions of z. Substitute from Eq. (21) into Eq. (14)

to get 4 - g
z

v=mmg—mm%-qm1 (22)

Equations (17), (21) and (22) represent the curvilinear displacement field that mini-

mizes the zeroth order approximation of the shell energy. Using Eq. (7) the curvilinear
displacement field is written in Cartesian coordinates as

u = Ul (.’I.')

up = Us(z) — 2¢0(z)

uz = Ua(z) + yo(z)
The variables U,(z), Us(z) and Us(z) represent the average cross-sectional transla-
tion while ¢(z) the cross-sectional rotation normally referred to in beam theory as
the torsional rotation. This displacement field corresponds to the zeroth-order ap-
proximation and does not include bending behavior. For a centroidal coordinate
system Ui (z), Ua(z), Us(z) and ¢(z) can be expressed as

Ui(z) =1
UQ(I) =1,
Us(z) =13



First-Order Approximation

A first-order approximation can be constructed by rewriting the displacement ficld
in Egs. (17), (21) and (22) in the form

v = Ui(z) + wi (s, z)
Vg = UQ(.’E)% + Ua(I)% + @o(z)rn + wo(s, ) ) ' (23)

v= Ug(x)% - U;;(:z:)% — o(z)re + w(s, x)

where wy, w2 and w can be regarded as correction functions to be determined based
on their contributions to the energy functional.

Substitute Eq. (23) into Eq. (6) to obtain the strains and curvatures in terms of
the displacement corrections

o aw,
T1="Tn+ Bz
° 6‘!.02 . 311}1
12 = 2%, = o
M2 =2"12+ o + 272 T2 s
o - - 6w2 w
Y= T2+ Y22 , '722=—6?+E
° 8w
pu="FPn+ ) (24)
_B+62w 36w2+, . 1 0w
12 12 959z 4R Oz P12 , P2 = iR Os
° - n 6210 a Wo
pu=butin o bn=gg -5 (7)

where 7%, and £°,g are the strains and curvatures corresponding to the zeroth-order
approximation. These are expressed as

'?u = Uj(z)
o PN ondz o,
2 =Uj@) 3 +Ui(@) T + ¢
T2 =0

. 10



2 " dz " d "
P =U; (x)Z} - Us (I)d_z —¢'(@)re (25)

L
4R

-]
P12 =

segrmeF + oem] - ¢

;’22=0

The primes in Eq. (25) denotes differentiation with respect to z. The order of w;
is (ébi). Among the new terms introduced by the function w; the leading ones are
denoted by superscript © in Eq. (24). By keeping their contribution over the other
terms, the energy functional can be represented by

®(111,2712 + 2512, Y22 0, A2, P22)
where terms of order (%;%) or smaller such as
. -] ~ 1~ - 20 ~ 20 -
Rz, WPz, h*Puprz, R°Pu1p2e
o o 2° . 2% 4
hP1o%12 , P12, A*Pr2p12, h*P12p22
are neglected in comparison with the following terms
(-3 ~ o - o ~ o . -
TuHz, Tudez, Y1212, T12722

of order (%;). Similarly, the contribution of the work done by external forces, Piw, is
neglectec since its order is (Eh%;(%)) in comparison with the order of the remaining

terms in -he energy functional (Eh%fr _ Therefore in order to determine the functions
w; one hzs to minimize the function

fq)(’yll: 2712 + 2’712: ’?22; 0’ﬁ12)ﬁ22) dS

If the rig’d body motion is suppressed the solution is unique. The terms pi2, p22 are
essential o the uniqueness of the solution; however, their contribution to the energy
is of orcar (E'h-%;(%)) and is consequently dropped. This aspect is discussed by
Berdichevsky and Misiura (1991) with regard to the accuracy of classical shell theory.
The she'. energy can therefore be represented by

L . o
I = /0 ]{(1’(’711,2712 + 2%12,%22,0,0,0) dsdz (26)

It is worzh noting that the bending contribution does not appear in Eq. (26). That
is, to the first order approximation the shell energy corresponds Lo a membrane state.

11



The first variation of the energy functional is

L 0% dun o0b [Ow, w
I= / ——b| = 2265 =—+ =] dsdz 27
J 0 }({6(2'712) ( Jds ) + 6’}’22 ( 0s + R)} ( )
Equation (27) can be written in terms of the shear flow N2 and hoop stress resultant
Na, by recalling that Npp= 5(,%—2—) and Ny = 3"%. The result is

_[F d(bun) O(bwsy) | 1
oI = L f {Nu Os + N22 (————‘as + Eéw) } dsdz

Set the first variation of the energy to zero, to obtain the following

0N
ds 0
Ny _
ds 0
Noy
= 0
which result in .
N2 = constant - (28)
and
Ny =0 (29)

This is similar to the classical solution of constant shear flow and vanishing hoop
stress. By sctting Nz, to zero the energy density is expressed in terms of y11 and 712

only
29, = r{}zlzn 20 = A(s)(mu)® + 2B(s)yumz2 + C(s)(m2)’ (30)

The variables A(s), B(s) and C(s) represent the axial, coupling and shear stifnesses,
respectively. They are defined in terms of the 2D shell moduli in the Appendix.

Equation (30) indicates that, to the first order, the energy density function is
independent of functions w; and w. That is the in-plane warping contribution to the
shell energy is negligible. The function w, however, can be determined from Eqgs. (28)
and (30) and by enforcing the condition on w, to be single valued as follows

%,

1
Nz =73 @v2) 2

(B(s)yu + C(s)2) = constant (31)

12



Substitute the leading terms from Eqs. (24) and (25) into Eq. (31) to get

%BU{ (z) + %C (U;(a:)% + U;’,(x)%:- + ¢ (z)ra(s) + %) = constant (32)
In deriving Eq. (32) the term B%;—‘;-L has been neglected in comparison with %C‘%“—}.
This is possible if |B| is less or of the same order of magnitude as C. For the
case when |B| >> C additional investigation is needed. Since the elastic energy
is positive definite, B> < AC, and B could be greater than C only if A >> C. In
practical laminated composite designs |B| < C, as the shear stiffness is greater than
the extension-shear coupling. - :

Equation (32) is a first-order ordinary differential equation in w;. The value of
the constant in the right hand side of Eq. (32) can be found from the single value
condition of function w:

P

6w1 _1 3w1 _
(‘a?)—z 55 =0

The solution of Eq. (32) is determined within an arbitrary function of z. This function
can be specified from various conditions. Each one yields a specific interpretation of
the variable U;. For example if @y = 0 the variable U; = 77 according to Eq. (23).
The choice of these conditions does not affect the final form of the 1D beam theory
and therefore will not be specified in this formulation. The result is the following

simple analytical solution of Eq. (32)
wy = —yUs(z) — 2Us(z) + G(s)¢' (z) + g1(s)Ui(z) (33)

where

c0)= [ [Bzetr) = ol

ai(s) = /0 ) [b(f) - %c(f)] dr

_ _9B6) _ !
b(s) = —2 C6) c(s) = 0

The area enclosed by contour I is denoted by A. in Eq. (34).

Ae = =Tn (34)

N | e~

The displacement field corresponding to the first correction is obtained by sub-
stituting Eq. (33) into Eq. (23) and dropping w, and w since their contribution to

13



the shell energy is negligible compared to w;. The result referred to as first-order
approximation is given by '

o = Ur(a) - 3(s)UL(@) — 2(5)V(z) + G5} @) + 9r(s)Vi (3)
Vo = UQ(I)% + U3(I)%: + (P(I)T'n

d d
v=Ua()g - Us(@) % — p@)

Displacement Field

The displacement field corresponding to the next correction is found in the same
way. A third correction can also be performed. However, subsequent corrections yield
only smaller terms, as shown in Badir (1992), and the displacement field converges
to the following expression

o = Ui(@) - y(s)Us(@) — 2(s)U3(@) + G} (@)
* + o (U() + ga()UL() + (V3 ()
3 = Ua(2) o + V@)% + ol (35)

d d
v= Ug(x)a-si - U:;(I)E% — p(z)re

where

) =~ [} s - 2 )| ar

ga(s) = — /08 {b('r)z('r) - %C(T)] dr (36)

It is seen from expressions (34) and (36) that G(s), gl(.é), g2(s), and gs(s) are single-
valued functions, that is

G(0) = G(l) = 9:(0) = 91(1) = 92(0) = g2(l) = g3(0) = g3()) = 0

The expressions for the displacements vz, v and the first four terms in v; are
analogous to the classical theory of extension, bending and torsion of beams. The
additional terms g1(s)U}, g2(s)U; and g3(s)U3 in the expression of v, in Eq. (35)
represent warping due to axial strain and bending. These new terms emerge natu-
rally in addition to the classical torsional related warping G(s)¢'. They are strongly
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influenced by the material’s anisotropy, and vanish for materials that are either or-
thotropic or whose properties are antisymmetric relative to the shell middle surface.
These out-of-plane warping functions were first derived by Armanios et al. (1991) for
laminated composites.

The contribution of out-of-plane warping was considered recently by Kosmatka
(1991). Local in-plane deformations and out-of-plane warping of the cross section
were expressed in terms of unknown functions. These functions were assumed to be
proportional to the axial strain, bending curvature and twist rate within the cross
section and were determined using a finite element modeling. In the present formula-
tion, the out-of-plane warping is shown to be proportional to the axial strain, bending
curvature and torsion twist rate. The functions associated with each physical behav-
ior are expressed in closed-form by g:1(s) for the axial strain, g2(s) and ga(s) for the
bending curvatures and G(s) for the torsion twist rate.

Strain Field

The strain field is obtained by substituting Eq. (35) into Eq. (6) and neglecting
terms of smaller order in the shell energy. The result is

1 = Uj(z) - y(s)Uz (z) — 2(s)U5 (2)

24,
lc

- bt - Zeto)| vz @)

2712 c(s)¢' + [b(s) - gc(s)] U;

- [b(s)z(s) - gc(s)] ur

T2 =0
It is worth noting that the vanishing of hoop stress resultant in Eq. (29) and hoop
strain in Eq. (37) should be interpreted as negligible contribution relative to other
parameters. The longitudinal strain v is & linear function of y and z. This result
was adopted as an assumption in the work of Libove (1988).

In deriving Eq. (37), higher order terms associated with G¢” in the energy func-

2
tional have been neglected in comparison with C (%ccp’) as shown in Badir (1992).
This is possible if the following inequalities are satisfied

AN 1 Z(E) <
C\L C\L
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Constitutive Relationships

Substitute Eq. (37) in the energy density, Eq. (30), and integrate over s to get the
energy of 1D beam theory

= “@ade - [ Pandzds (38)

where

1 /

3 [C11(UD? + Caal')? + Caa(Us ? 4 Cua(U3)’]

+012U{(p’ + CmU{U:’;’ + CMU{Ug

+Ca' Uy + Casd' U + CasUy Us . (39)

Explicit expressions for the stiffness coefficients Ci; (i, 7 = 1, 4) are given in the
Appendix.

®,

The constitutive relationships can be written in terms of stress resultants and kine-
matic variables by differentiating Eq. (39) with respect to the associated kinematic
variable or by relating the traction 7, torsional moment M, and bending moments
M, and M, to the shear flow and axial stress as follows

T=-g%:7=f/and£ds=}(Nnds
M, = %% = f / o1a7(s)dEds = j( Nygra(s)ds
M, = -?%Z; - f / onzdeds = — f Nuz(s)ds (40)
M, = % = -f/onydgds = —j{Nny(s)ds

The shear flow N2 is derived from the energy density in Eq. (31) and the axial stress
resultant Np; is given by

o '
Ny = ;9—1- = A(s)m + B(s)mz2 (41)
11

and the associated axial and shear stresses are uniform through the wall thickness.

Substitute Eq. (37) into Egs. (31) and (41) and use Eq. (40) to get

T Cn Ciz Ci Cul (Ul

M, — Cp2 Cn Cys Ca @' ( 42)
M, Cis Cun Cu Cul||Us '
MZ Cl4 024 034 044 Ug
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Equilibrium Equations

The equilibrium equations can be derived by substituting the displacement field
in Eq. (35) into the energy functional in Eq. (10) and using the principle of minimum
total potential energy to get

T+ § Puds =0

M.+ }( (Py — P,2)ds =0
MY+ ( f P,zds) + f Pds=0 (43)

M! +(§ Peyds) + § Pds =0

. where P;, P, and P, are surface tractions along the z, y and z directions, respectively.

One of the member of each of the following four pairs must be prescribed at the

beam ends :
TorlUy, Mzoro, _MygrU:’,,,and M, orU, (44)

SUMMARY OF GOVERNING EQUATIONS

The development presented in this work encompasses five equations. The first, is
the displacement field given in Eq. (35). Its functional form was determined based
on an asymptotical expansion of shell energy. The associated strain field is given in
Eq. (37) and the stress resultants in Egs. (31), (40) and (41). The fourth, are the
constitutive relationships in Eq. (42) with the stiffness coefficients expressed as inte-
grals of material properties and cross sectional geometry in Eq. (56) of the Appendix.
Finally the equilibrium equations and boundary conditions are given in Eq. (43) and
(44), respectively.

In the present development the determination of the displacement field is essential
in obtaining accurate expressions for the beam stiffnesses. A comparison of the derived
displacement field with results obtained by previous investigators is presented in the
following section.

COMPARISON OF DISPLACEMENT FIELDS
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The pioneering work of Reissner and Tsai (1972) is based on developing an exact
solution to the governing equilibrium, compatibility and constitutive relationships
of shell theory. Closed as well as open cross-sections were considered. The derived
constitutive relationships are similar to Eq. (42). However, the authors left to the
reader the derivation of the explicit expressions for the stiffness coefficients. This
may be the reason for their work to have been overlooked. These expressions are
important in identifying the parameters controlling the behavior and in performing
parametric design studies. Furthermore, the explicit form of the displacement field
helps evaluate and understand predictions of other analytical and numerical models.

A number of assumptions were adopted in Reissner and- Tsai’s development re-
garding material properties such as neglecting the coupling between in-plane strains
and curvatures which can be significant in anisotropic materials. It is important to
assess the influence of these assumptions on the accuracy. This has been done in the
present work by using an asymptotical expansion of the shell energy and proving that
the coupling and curvatures contributions to the energy are small in comparison with
the in-plane contribution.

Mansfield and Sobey (1979) and Libove (1988) obtained the beam flexibilities re-
lating the stretching, twisting and bending deformations to the applied axial load, tor-
sional and bending moments for a special origin and axes orientation. They adopted
the assumptions of a negligible hoop stress resultant N,, and a membrane state in
the thin-walled beam section. Although they did not refer to the work of Reissner
and Tsai (1972), their stiffnesses coincide for the special case outlined in Reissner and
Tsai (1972). This special case refers to the one where the classical assumptions of
neglecting shear and hoop stresses and considering the shear flow to be constant is
adopted. However, one has to carry out the details to show this fact.

The work of Rehfield (1985) has been used in a number of composite applications.
Rehfield’s displacement field is of the form

‘uv=whﬂ—ﬂﬂﬂﬂd—ﬂndﬂk—dﬂﬂﬁﬂ—Q%Aﬂ}+ﬂaﬂ
u, = Up(z) — 2(5)p(7) (45)
ug = Us(z) + y(s)e(z)

where 7, and -y, are the transverse shear strains. The warping function g(s,z) is

given as )
g9(s,z) = G(s)¥'(z) (46)
with s

C(s) = 2A. i /Os Ta(7)dT (47)
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A comparison of the displacement fields in Eq. (35) and (45) shows that the warp-
ing function in Rehfield’s formulation comprises the torsiorial-related contribution
but does not include explicit terms that express the bending-related warping. The
torsional warping function G(s) in Eq. (34) is different from the function in Eq. (47).
The two expressions coincide when ¢ = constant that is, when the wall stiffness and
thickness are uniform along the cross section circumference.

The torsional warping function in Eq. (47) was modified by Atilgan (1989) and
Rehfield and Atilgan (1989) as

G(s) = /: ﬁ‘:;cl - Tn(T)]dT ) ) ' (48)
where 1
4= s B “9)
66 Ay,
and
{A’u ’16] - {AII"MA_?:X Als—%} (50)
7 16 Ass Ajg — &jﬁx Ags — g—%’iﬁ .

~ The A;; in Eq. (50) are the in-plane stiffnesses of Classical Lamination Theory
(Jones (1975) and Vinson and Sierakowski (1987)). They are related to the modulus
tensor by

Ay =< J ORI s A =< E‘”22 >, Ay =< E2222 >

AIG =< E“w >, Azs =< f;w?2 >, Ass =< E1212 >

A comparison of the modified torsional warping function in Eq. (48) and G(s) in
Eq. (34) shows that they coincide for laminates with no extension-shear coupling
(< D2 >=< D™ >=(, in Eq. (54) of the Appendix). For the case where the
through-the-thickness contribution is neglected in Eq. (54), this reduces to A =
Ay =0.

The warping function obtained by Smith and Chopra (1990, 1991) for composite
box-beams is identical to the expression of Rehfield and Atilgan (1989) and Atilgan
(1989) given in Egs. (46) and (48).

An assessment of all the previous warping expressions can be made by checking
whether they reduce to the exact expression for isotropic materials (see, for example,
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Meygson (1990))

&(s) = [ [?Zi:@ _ r,,(r)}dr (51)

with
1

1h(s)

Cy =
where 4 is the shear modulys.

For isotropic materials the in-plane coupling & is zero and consequently g;, g, and
93 in Eqs. (34) and (36) vanish. That is the warping is torsion-related and reduces
to G(s)¢’. Moreover, the shear parameter c is equal to TI:(T) and the expressions for

G(s) and é(s) in Egs. (34) and (51) coincide.

Rehfield’s warping function in Eq. (47) coincides with Eq. (51) when the material
properties and the thickness are uniform along the wall circumference. Atilgan’s
(1989), Rehfield and Atilgan’s (1989), and Smith and Chopra’s (1991) formulations
reduce to Eq. (51) for isotropic materials.

APPLICATIONS

. Two special layups: the circumferentially uniform stiffness (CUS) and circumfer-
entially asymmetric stiffness (CAS) have been considered by Atilgan (1989), Rehfield
and Atilgan (1989), Hodges et al. (1989), Rehfield et al. (1990), Chandra et al
(1990), and Smith and Chopra (1990, 1991).

CUS Configuration

This configuration produces extension-twist coupling. The axial, coupling and
in-plane stiffnesses A, B, and C given in Eq. (53) of the Appendix are constant
throughout the cross section, and hence the name circumferentially uniform stiffness
(CUS) was adopted by Atilgan (1989), Rehfield and Atilgan (1989), Hodges et al.
(1989), and Rehfield ef ql (1990). For a box-beam, the ply lay-ups on opposite
sides are of reversed orientation, and hence the name antisymmetric configuration
was adopted by Chandra et af (1990), and Smith and Chopra (1990,1991).

Since A, B, and C are constants, the stiffness matrix in Eq. (42), for a centroidal
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coordinate system, reduces to

Ch Cz 0 O

Cp2 Cr O 0
0 0 Ciz O
0 0 0 Cu

The nonzero stiffness coefficients are given by

Cu = Al
Cl2 = BAc
Cn= %Az " (52)

033=Aj(z2ds-%3fz2ds
c44=Afy2a-%fy2ds

For such a case the out-of-plane warping due to axial strain vanishes and g does
not affect the response. ’

CAS Configuration

This configuration produces bending-twist coupling. The stiffness A is constant
throughout the cross section. For a box beam, the coupling stifiness, B in opposite
members is of opposite sign and hence the name circumferentially asymmetric stiff-
ness (CAS) was adopted by Atilgan(1989), Rehfield and Atilgan(1989), Hodges et
al.(1989), and Rehfield et al.(1990). For a box-beam, the ply lay-ups along the hori-
zontal members are mirror images, and hence the name symmetric configuration was
adopted by Chandra et al.(1990), and Smith and Chopra(1990,1991). The stiffness
C in opposite members is equal. The stiffness matrix, for a centroidal system of axes,

reduces to
Cau O 0 0

0 Cp Cyn O
0 Cu Caun O
0 0 0 Cu

The nonzero stiffness coefficients are expressed by

: B2
= Al - 2=
Ch=A — Ctd
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Table 1: Properties of T300/5208 Graphite/Epoxy

Ej = 21.3 Msi
Gm = Gls =0.9 Msi

Gao3 = 0.7 Msi
V12=V13=0.28
V23=05
— C‘
b ) i
- B, 2
Co= ara(@)] -
g B o A
C33—Afzds-2ct{a [d+a(%)]}A¢
C“-——-Anyds—%Za

Subscripts ¢t and v denote top and vertical members, respectively. The box width
and height are denoted by d and a, respectively. For the CAS configuration and with
reference to the Cartesian coordinate system in Fig. 1, bending about the y-axis is
coupled with torsion while extension and bending about the z-axis are decoupled.

In order to assess the accuracy of the predictions the present theory is applied to
the box beam studied by Hodges et al. (1989). The cross sectional configuration is
shown in Fig. 3 and the material properties in Table 1.

Flexibility Coefficients

A comparison of the flexibility cocflicients S;; with the predictions from two models
is provided in Table 2. The flexibility coefficients S;; are obtained by inverting the
4 x 4 matrix in Eq. (42). The NABSA (Nonhomogeneous Anisotropic Beam Section
Analysis) is a finite clement model based on an extension of the work of Giavotto
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Table 2: Comparison of Flexibility Coefficients of
(Ib,in units)

NABSA, TAIL and Present

Flexibility | NABSA PRESENT % Diff. | TAIL % Diff.
Sh x 10° 0.143883 0.14491 +0.7 0.14491  +0.7
Sgo x 104 0.312145 0.32364 +3.6 0.32364 +3.6
Sip x 10° | —0.417841 | —0.43010 +29 | -0.43010 +2.9
Saz x 10¢ 0.183684 0.1886 +2.6 0.17294 —5.8
Sas X 10° 0.614311 0.63429 4+3.2 0.50157 -—184

Table 3: Geometry and Mechanical Properties of Thin-Walled Beam with [+12]s CUS
square cross-section

Length = 24.0 in. Eu = EQQ = E33 = 11.65 Msi
Wldth = depth =117 in. Gu = G13 = 082, G23 = 0.7 Msi
Ply thickness = 0.0075in. vi2e=Vi3 = 005, Vo3 = 0.3

et al.(1983). In this model all possible types of warping are accounted for. The
TAIL model is based on the theory of Rehfield (1985) while neglecting the restrained
torsional warping. The predictions of the NABSA and TAIL models are provided by
Hodges et al.(1989). The percentage differences appearing in Table 2 are relative to
the NABSA predictions. The present theory is in good agreement with NABSA. Its
predictions show a difference ranging from +0.7 to +3.6 percent while those based
on Rehfield’s theory (1985) range from +3.6 to —18.4 percent.

The present theory is applied to the prediction of the tip deformation in a can-
tilevered beam made of Graphite/Epoxy and subjected to different types of load-
ing. The beam has a CUS square cross section with [+12]4 lay-up. The geometry
and mechanical properties are given in Table 3. Comparison of results with the
MSC/NASTRAN finite element analysis of Nixon (1989) is provided in Table 4. The
MSC/NASTRAN analysis is based on a 2D plate model. The predictions of the

present theory range from +1.7 to —0.7 percent difference relative to the finite ele-
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Table 4: MSC/NASTRAN and Present Solutions for a CUS Cantilevered Beam with

[+12]« Layups Subjected to Various Tip Load Cases

Tip Load Tip Deformation % Diff.
NASTRAN Present

Axial Force (100 Ib) Axial Disp. : 0.002189 in. 0.002202 in. | +0.6 %

Axial Force (100 1b) Twist : 0.3178 deg.  0.32325 deg. | +1.7 %

Torsional Moment (100 Ib-in) | Twist : 2959 deg.  2.998 deg. +1.32 %

Transverse Force (100 1b) Deflection :  1.866in. 1853 in. -0.7%

Table 5: Cantilever Geometry and Properties

Width = 0.953 in. En = 20.59 MSi, E22 = E33 = 1.42 Msi

Depth = 0.53 in. - Gu = Gla = (.87 MSi, ng = 0.7 Msi

Ply thickness = 0.005 in. V2 =¥3 = 0.42, vp3 = 0.5

ment results.

For a CUS configuration, the extension-torsional response is decoupled from bend-
ing. Since C is constant and g; does not affect the stiffness coefficients, the flexibility
coefficients controlling extension and twist response, Si1, S12 and S,; coincide with
those of Atilgan (1989), and Rehfield and Atilgan (1989). As a consequence, the ax-
ial displacement and twist angle predictions coincide. However, the lateral deflection
under transverse load differs. The tip lateral deflection predicted using the theory of
Rehfield (1985), and Atilgan (1989), and Rehfield and Atilgan (1989), is 1.724 inch
resulting in —7.6 percentage difference compared to the NASTRAN result.

The test data appearing in the comparisons of Figs. 4-9, are reported by Chandra
et al. (1990), and Smith and Chopra (1990, 1991). Figures 4 and 5 show the bending
slope variation along the beam span for antisymmetric and symmetric cantilevers
under a 1 Ib transverse tip load. The beam geometry and material properties are
given in Table 5. The analytical predictions reported by Chandra et al. (1990), and
Smith and Chopra (1990, 1991) together with results obtained on the basis of the
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analyses of Rehfield (1985), Rehfield and Atilgan (1989), Atilgan (1989), and the
present work are combined in Figs. 4 and 5. Results show that the predictions of the
present theory are the closest to the test data when compared to the other analytical

approaches.

The bending slope in Figs. 4 and 5 is defined in terms of the cross section rotation
for theories including shear deformation. For the geometry and material properties
considered, this effect is negligible as shown in Figs. 4 and 5 where the spanwise slope
at the fixed end predicted by theories with shear deformation, is indistinguishable
from zero. The nonzero value shown by the test data may be due to the experimental
set up used to achieve clamped end conditions. ) '

The spanwise twist distribution of symmetric cantilevered beam with [30]s and
[45] lay-ups is plotted in Figs. 6 and 7, respectively. The beams are subjected to
a transverse tip load of 1 Ib. Their dimensions and material properties are given in
Table 5. Results show that the present theory and the works of Rehfield and Atilgan
(1989) and Atilgan (1989) are the closest to the test data. A similar behavior is
found for the bending slope and the twist angle at the mid-span of the symmetric
cantilevered beams appearing in Figs. 8 and 9. The beams are subjected to a tip

torque of 1 lb-in.

CONCLUSION

An anisotropic thin-walled closed section beam theory has been developed based
on an asymptotical analysis of the shell energy functional. The displacement field
is not assumed apriori and emerges as a result of the analysis. In addition to the
classical out-of-plane torsional warping, two new contributions are identified namely,
axial strain and bending warping. A comparison of the derived governing equations
confirms the theory developed by Reissner and Tsai. In addition, explicit closed-form
expressions for the beam stiffness coefficients, the stress and displacement fields are
provided. The predictions of the present theory have been validated by comparison
with finite element simulation, other closed form analyses and test data.
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APPENDIX

In this appendix explicit expressions for some of the relevant variables used in the
development as well as the stifinesses Cij (i, 7=1,4) in Eq. (42) are provided.

The three stifiness parameters A, B and C in Eq. (30) are expressed in terms of
the Hookean tensor E'7* as follows

_ 111 (< D" >)?
A(s)=< D > -—<—DT22';—
< D22 5« D122 >
B(s) =2 (< D" > — < D222 > ) (53)
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< D1222 > 2
Cls) =4 (< D> —(—zﬁ'?))

The 2D Young’s moduli D** are given by

. 533 633
posrs = powns - B2 E;j; — HpnGoPHG™ (54)
where
Eaﬁ33 E'p.333
Bu _ paded _ 21—
G = B — ——m

A3 _ EMBEXSS

and H,, are components of the inverse of the 2D matrix |

Combining Eq. (34) and (53) the variables b and ¢ can be written as

1122 1222
b( ) < puz 5 <D <D><D> >
S)=— 1373532

and !

c(s) =
1212 _ <Dl222> 2
4 (< D152 > i—m—L< DTS )
where the pointed brackets denote integration over the thickness as defined in Eq.

9).

Expressions for the stiffness coefficients Ci; (i, j = 1, 4) in terms of the cross
section geometry and materials properties are as follows

Cn=fa-Loas+ [$ (B/C)dsf?

(55)

§(1/C)ds
cu= B A
G =~ f (4= Eyaas - LELOB A LIS
Cum — § (4= Epys - P10 GO
o = o (50
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o (B/C)yds
#TT0/C)s
B? [§ (B/C)zds]®
Cas = f(A— Z)etds +
B? §(B/C)yds §(B/C)zds
CS4=}{(A-—C—)yzds+ 5 (/C)ds

B ,. . [§(B/C)yds]*
C«:f(A——é-)y dS+W

A.
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Figure 1: Cartesian Coordinate System
Figure 2: Curvilinear Coordinate System
Figure 3: Beam Cross Section

Figure 4: Bending Slope of an Anti-Symmetric [15]¢ Cantilever Under 1 1b Transverse
Tip Load

Figure 5: Bending Slope of a Symmetric [30]¢ Cantilever Under 1 1b ’I‘ransversé Tip
Load '

Figure 6: Twist of a Symmetric [30]¢ Cantilever Under 1 Ib Transverse Tip Load
Figure 7: Twist of a Symmetric [45)6 Cantilever Under 1 b Transverse Tip Load

Figure 8: Bending slope at mid-span under unit tip torque of Symmetric lay-up
Cantilever beams

Figure 9: Twist at mid-span under unit tip torque of Symmetric lay-up Cantilever
beams
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